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A New Statistical Aspect of the Cluster Variation
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This paper presents an alternative statistical way to derive the cluster variation
method (CVM) for lattice systems. The formulation is developed for a series of
different clusters, each of which is the largest overlap cluster between two
clusters of the next larger type. We arrive at the CVM expression of the lattice
configuration factor by deriving the number of different ways of distributing
clusters of a selected type in the lattice so that they overlap each other at the
largest overlap clusters in a physically correct manner. The essential assumption
employed is that individual overlapping events are statistically independent of
each other. This reveals a new statistical aspect of the CVM: The CVM is based
on a Bethe tree of clusters of the selected type.

KEY WORDS: Cluster variation method; Kikuchi approximation; lattice
system; configuration factor; Bethe tree; cluster distribution; cluster series.

1. INTRODUCTION

The cluster variation method (CVM) (1, 2) has been recognized by many
authors to be one of the most powerful theories to treat analytically lattice
systems. The original CVM was started by Kikuchi, (3, 4) who derived the
lattice configuration factor by considering the process of adding one lattice
point of either of the two kinds to the lattice in harmony with the equi-
librium distribution of clusters over different cluster configurations.
However, complicated steps composing the formulation make it difficult to
generalize his method for larger clusters. Later, he and his coworkers(5)

reformulated the CVM by introducing a pseudo-assembly of subclusters in
which the probability of the subclusters being distributed in a physically
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correct manner was assumed to be equal to that of parent clusters (we use
parent instead of main in their papers) in their assembly. However, physical
implications of their assumption is not necessarily clear, as mentioned by
themselves.(5) Hijmans and de Boer(6, 8) generalized the pseudo-assembly
method to treat larger parent clusters. There are different shapes of overlap
clusters between two neighboring parent clusters, depending on their
separation, and they incorporated all kinds of overlap clusters with their
theory.

On the other hand, Barker(9) derived the CVM simply by considering
conditional sums of the lattice configuration factor: Counting up micro-
states of parent cluster distribution which are consistent with a given
macrostate of subcluster distribution should yield the lattice configuration
factor with respect to the subcluster distribution. His treatment is mathe-
matical rather than statistical when compared with the theories of Kikuchi
and his coworkers. His mathematical approach to a series of clusters of
different shapes has been refined into sophisticated theories by many
authors, (10) and Morita(10, 11) has recently completed elegant mathematical
formalism by the Mo� bius inversion method.

In this paper, we present an alternative statistical derivation of the
CVM. We define a series of clusters so that every constituent of the series
is the largest overlap cluster between two nearest neighboring clusters
belonging to the next larger constituent. When we choose one type of
clusters from the series as parent clusters to be distributed in the lattice,
only smaller clusters involved in the series are treated as subclusters of the
parent cluster. However, we explicitly treat only the largest overlap
between parent clusters. We formulate the number of different ways of
distributing parent clusters in the lattice so that they overlap each other at
the largest overlap clusters in a physically correct manner, assuming that
individual overlapping events are statistically independent of each other.
A minor correction factor introduced for the deviation from the statistical
independence is determined by reducibility conditions of the lattice con-
figuration factor. Our method will be found to be much simpler and much
clearer in statistical implications than Kikuchi's original combinatorial
method and the pseudo-assembly method. As a consequence, our formula-
tion will reveal a new statistical aspect of the CVM: The lattice system
treated in the CVM is a Bethe tree of parent clusters.

This paper is organized as follows. The next section describes our for-
mulation of the CVM. Following some preparatory subsections concerning
definitions and internal consistency conditions, Subsections 2.6 and 2.7
show our original derivation of the lattice configuration factor. In the final
Section 3, we reveal the new statistical aspect of the CVM by discussing
about statistical implications of our formulation.
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2. FORMULATION

2.1. Series of Clusters

Consider a lattice composed of N1 lattice points which are equivalent
to each other with respect to the translational and rotational symmetry of
the lattice. However, the lattice points are classified into two types, A and B.
They refer to A and B atoms in an alloy system, up and down spins in
an Ising system, or occupied and empty sites in a lattice gas system. The
number of the lattice points of A type is denoted as NA .

We consider a cluster of some nearest neighboring lattice points form-
ing a certain shape. The shape applies to congruence, i.e., is not affected by
orientation. There exist many clusters of the same shape in the lattice.
Every lattice point belongs to some different clusters of the same shape. In
other words, the lattice is composed of many clusters of the same shape
partially overlapping each other. The common part shared by two over-
lapping clusters is called the overlap cluster, whose size and shape depend
on the separation and orientation of the two clusters. In a triangular lattice
for instance, a triangular cluster composed of three nearest neighboring lat-
tice points can overlap its neighboring triangular cluster at its angle or at
its side.

The cluster that involves a single lattice point as the largest overlap
cluster is a pair of nearest neighboring lattice points. The cluster that
involves a two-point pair as the largest overlap cluster is, for example,
a triangle composed of three nearest neighboring lattice points for a tri-
angular lattice and a square composed of four nearest neighboring lattice
points for a square lattice. In this way we can derive, but not uniquely,
a series of clusters starting with a single lattice point. We call the i th cluster
in the series the i-cluster. We regard a single lattice point as the smallest
cluster, and we call it the 1-cluster. The 2-cluster is a pair of nearest
neighboring lattice points, and so on. Note that the i-cluster is the largest
overlap cluster shared by two (i+1)-clusters. Fig. 1 shows examples for a
triangular lattice, a square one, and a simple cubic one. An alternative
series of clusters for a triangular lattice is such that the 1- through
4-clusters are the same as in Fig. 1(a), but the 5-cluster is an equilateral tri-
angle composed of six lattice points, the 6-cluster is a rhombus composed
of two contacting 5-clusters, and so on.

We denote the number of i-clusters contained in the lattice as Ni . We
have

Ni=aiN1 (1)
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Fig. 1. Series of clusters. The i-cluster is the largest overlap cluster between two (i+1)-
clusters. In these examples, the (i+1)-cluster is also the largest parent cluster for the i-sub-
cluster: (a) triangular, (b) square, and (c) simple cubic lattices.

where ai is a positive integer. For example, if we adopt the series of clusters
shown in Fig. 1(a) for a triangular lattice, the lattice contains N1 lattice
points (a1=1), 3N1 two-point pairs (a2=3), 2N1 triangles (a3=2),
3N1 rhombi (a4=3), and so on.

2.2. Cluster Configurations and Cluster Distributions

Clusters have some different configurations of A- and B-lattice-points,
which cannot be transformed to each other by rotation or mirror image.
For example, two-point pairs have three different configurations, AA, AB,
and BB, and triangles have four different configurations, AAA, AAB, ABB,
and BBB. The number of different configurations of the i-cluster is denoted
as Ci . An i-cluster with the k th configuration is called an ik -cluster. The
number of different ways of placing an ik -cluster in the lattice with each
vertex at a fixed position is called the statistical weight or the number of
different cluster orientations, wik . Fig. 2 shows some examples of different
configurations of clusters in a triangular lattice and in a square one
together with their statistical weights.
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The number of ik -clusters contained in the lattice is denoted as N ik .
For i=1, N11=N1&NA and N12=NA . We have

:
Ci

k=1

Nik=Ni (2)

For later convenience, we define the fraction nik of i-clusters having the
configuration k as

nik#N ik �Ni (3)

The set of numbers, Ni1 , N i2 ,..., Ni, Ci
is abbreviated as [i ]. The set [i ]

represents a macrostate of the lattice with respect to the i-cluster distribution.
Our aim is to obtain (although approximately) the number of different

ways, Zi, of distributing [i ] clusters in the lattice, which is also called the
lattice configuration factor with respect to the i-cluster distribution. When
we distribute [i ] clusters at random at the Ni positions in the lattice, the
number of different distributions, Gi ([i ]), is given by

Gi ([i ])#Ni ! `
Ci

k=1

[wNik
ik �Nik !] (4)

However, this number includes not only physically correct distributions but
also incorrect ones: Physically correct means that every A- or B-lattice
point of any i-cluster overlaps a lattice point of the same kind of any
neighboring i-cluster. Only when i=1 (i.e., clusters are single lattice
points), all of G1 distributions are physically correct. We shall derive the
probability of the distribution being physically correct when [i ] clusters
are placed at random in the lattice. Then, Zi is given by Gi ([i ]) multiplied
by this probability.

2.3. Subclusters and Their Internal Positions and Orientations

An i-cluster contains smaller clusters, i.e., 1- through (i&1)-clusters of
the series. These are called subclusters of the parent i-cluster. Note that the
subclusters do not necessarily include all the possible overlap clusters
shared by two i-clusters. For example, when we take the 4-cluster (rectangle)
as the parent cluster in a square lattice (see Fig. 1(b)), two 4-clusters can
overlap each other at their long sides (linear chains of three nearest
neighboring lattice points), but the long side is not taken as the subcluster
of the 4-cluster since it does not appear in the cluster series.
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Fig. 2. Different configurations of clusters of the type 1 through 4 in a triangular lattice (a)
and in a square lattice (b). Closed and open circles represent lattice points of A and B types,
respectively, but open circles are omitted for 3- and 4-clusters. Statistical weights are given in
parentheses.

We call a j-cluster contained in an i-cluster a j (i)-subcluster. We denote
the number of j (i)-subclusters contained in one parent i-cluster as bi

j . When
lattice points contained in a parent cluster are not all equivalent in the
sense that they cannot all be transformed to each other by rotation or
mirror image, bi

j positions for j (i)-subclusters in the parent i-cluster are not
always all equivalent in the same sense. We denote the number of these
constitutionally non-equivalent internal positions for a j (i)-subcluster as Pi

j ,
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Fig. 2. (Continued )
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and the number of the non-equivalent internal positions of the s th kind in
a parent i-cluster as b is

j . We have

:
P i

j

s=1

b is
j =b i

j (5)

We call the j (i)-subcluster located at an internal position of the sth kind the
j (is)-subcluster.

For example, consider the 4-cluster (rhombus) in a triangular lattice
(see Fig. 2(a)). It has four 1(4)-subclusters (single lattice points, b4

1=4) at
two kinds of non-equivalent internal positions (P4

1=2), i.e., two acute and
two obtuse angle sites (b41

1 =b42
1 =2), and five 2(4)-subclusters (two-point

pairs, b4
2=5) at two kinds of non-equivalent internal positions (P4

2=2),
i.e., four sides (b41

2 =4) and one short diagonal site (b42
2 =1) of the rhom-

bus. But, the two 3(4)-subclusters (triangles, b4
3=2) occupy equivalent

internal positions (P4
3=1).

It is noted that the largest subcluster, i.e., the (i&1) (i)-subcluster, has
in general only one kind of internal positions, i.e., P i

i&1=1. Because, if not,
two largest subclusters at different kinds of internal positions can be com-
bined to form a larger overlap cluster.

A jq -cluster has wjq orientations in the lattice, which are equivalent in
the sense that they can be transformed to each other by rotation or mirror
image. However, all of the wjq cluster orientations are not always equiv-
alent in the parent i-cluster in the same sense. These constitutionally non-
equivalent orientations of subclusters, which we call the non-equivalent
internal orientations, arise from the constitutional non-equivalency of the
lattice sites in the parent cluster. We call a j (is)-subcluster having the q th
configuration a j (is)

q -subcluster. We denote the number of non-equivalent
internal orientations of a j (is)

q -subcluster as O is
jq , and the statistical weight of

the r th kind of non-equivalent internal orientations as w is
jqr . We have for

any s

:
Ois

jq

r=1

w is
jqr=wjq (6)

For example, a 32 -cluster of a triangular lattice (an ABB triangle) has
three equivalent cluster orientations in the lattice (w32=3), but when it is
contained by a parent 4-cluster (a rhombus), the three orientations are not
all equivalent: The 3 (4)

2 -subcluster has a single kind of internal positions
(P4

3=1), but its orientations are classified according as the A-point is
located either at an acute angle (w4

321=1) or at an obtuse angle (w4
322=2)
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of the rhombus, i.e., O4
32=2. It is found that the two kinds of sites, i.e.,

acute and obtuse angle sites of the rhombus, give rise to non-equivalent
internal orientations of the subclusters.

2.4. Numbers of Subclusters and Overlap Multiplicity

The total number of j (i)-subclusters contained in all the i-clusters is
bi

jNi . Since the total number of j-clusters contained in the lattice is Nj , the
lattice is covered c i

j times by the j (i)-subclusters, where

c i
j#b i

jNi �Nj=aib i
j �aj (7)

In other words, c i
j nearest neighboring i-clusters share a common j (i)-sub-

cluster. The parameter c i
j is called the overlap multiplicity of i-clusters with

respect to j (i)-subclusters.
In a triangular lattice, for example, the number N4 of 4-clusters

(rhombi) in the lattice is 3N1 (a4=3) and each of them contains two 3(4)-
subclusters (triangles), i.e., b4

3=2. The total number of the 3 (4)-subclusters
is then b4

3 N4=6N1 , while the number N3 of 3-clusters in the lattice is 2N1

(a3=2). Accordingly, the number of times c4
3 that the 3(4)-subclusters cover

the lattice is 6N1�2N1=3. It is also easy to find that a 3(4)-subcluster is
shared by three 4-clusters. Tables I and II list values of ai , b i

j , and c i
j for

some small clusters of the cluster series in a triangular lattice and in a
square one, respectively.

We call a j (is)
q -subcluster with an internal orientation of the r th kind

a j (is)
qr -subcluster. We denote the numbers of j (i)

q -, j (is)
q -, and j (is)

qr -subclusters
contained in one parent ik -cluster as m ik

jq , m iks
jq , and m iks

jqr , respectively. The
total numbers of j (i)

q -, j (is)
q - and j (is)

qr -subclusters contained in all the

Table I. Parameters for a Triangular Latticea

i-cluster ai bi
1 b i

2 b i
3 b i

4 b i
5 c i

1 c i
2 c i

3 c i
4 ci

5 xi
1 x i

2 x i
3 xi

4 x i
5

1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
2 3 2 1 0 0 0 6 1 0 0 0 &5 1 0 0 0
3 2 3 3 1 0 0 6 2 1 0 0 1 &1 1 0 0
4 3 4 5 2 1 0 12 5 3 1 0 1 0 &2 1 0
5 2 6 9 4 3 1 12 6 4 2 1 1 0 0 &1 1

a Clusters of the type 1 through 4 are illustrated in Fig. 1 but the 5-cluster is the equilateral
triangular cluster composed of six lattice points.
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Table II. Parameters for a Square Latticea

i-cluster ai bi
1 b i

2 b i
3 b i

4 b i
5 c i

1 c i
2 c i

3 c i
4 ci

5 xi
1 x i

2 x i
3 xi

4 x i
5

1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
2 2 2 1 0 0 0 4 1 0 0 0 &3 1 0 0 0
3 1 4 4 1 0 0 4 2 1 0 0 1 &1 1 0 0
4 2 6 7 2 1 0 12 7 4 1 0 1 0 &3 1 0
5 1 9 12 4 4 1 9 6 4 2 1 0 0 1 &1 1

a The clusters are illustrated in Fig. 1.

i-clusters are denoted as M i
jq , M is

jq and M is
jqr , respectively. These are defined

by

M i
jq# :

Ci

k=1

m ik
jq Nik (8.1)

M is
jq# :

Ci

k=1

m iks
jq Nik (8.2)

M is
jqr# :

Ci

k=1

m iks
jqr Nik (8.3)

We have

:
Ois

jq

r=1

M is
jqr=M is

jq , :
P i

j

s=1

M is
jq=M i

jq , and :
Ci

j

q=1

M i
jq=b i

jNi (9)

The definition of the overlap multiplicity gives us a relation:

M i
jq=c i

jNjq (10)

2.5. Internal Consistency of the Parent Cluster

We have to note that the j (i)
q -subcluster has no preference to any of the

non-equivalent internal positions in the parent i-cluster. In other words,
any parent i-cluster distribution [i ] is not always physically correct, but
only the sets [i ] that realize a uniform distribution of j (i)

q -subclusters over
different internal positions are physically allowed. This requirement can be
expressed as follows.

M i1
jq

b i1
j

=
M i2

jq

b i2
j

= } } } =
M iP

jq

b iP
j \=

M i
jq

b i
j + (11)
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where the superscripts P are abbreviations of P i
j . We have similar sets of

equations for each of Cj different subcluster configurations q. These equa-
tions are called the internal consistency conditions of the i-cluster with
respect to the statistical uniformity among the non-equivalent internal posi-
tions of the j (i)-subcluster.

We have to recall also that the jq -cluster has no preferential orientation
in the lattice. j (is)

q -clusters have to be distributed uniformly over different
internal orientations. The requirement can be expressed as

M is
jq1

w is
jq1

=
M is

jq2

w is
jq2

= } } } =
M is

jqO

w is
jqO \=

M is
jq

wjq + (12)

for every kind s of the non-equivalent internal positions and for every
configuration q of the j (i)-subcluster. The subscripts O are abbreviations
of O is

jq . These equations are called the internal consistency conditions of the
i-cluster with respect to the statistical uniformity among the non-equivalent
internal orientations of j (i)-subclusters.

2.6. Physically Correct Overlap Between i-Clusters

Suppose that we distribute [i ]-clusters at random in the lattice. The
distribution may be either physically correct or incorrect. The number of
different distributions including physically incorrect ones is Gi ([i ]).
Consider an i-cluster at any specified position in the lattice, which we call
the central i-cluster. It contains b i

j j (i)-subclusters, each of which is shared by
c i

j&1 neighboring i-clusters. We focus our attention to one of the j (i)-sub-
clusters. Suppose the j (i)-subcluster is of the j (is)

qr -type. In order that one
neighboring i-cluster overlaps the central one at the j (i)

q -subcluster in con-
cern in a physically correct manner, the neighboring i-cluster should con-
tain a j (i)

q -subcluster at the proper internal position of the s$ th kind with
the proper internal orientation of the r$ th kind. Note that s$ and r$ are not
necessarily identical to s and r, respectively, but that they are particular
ones depending on s and r, respectively.

For example, Fig. 3 shows a 42 -cluster (ABBB rhombus, PQRS) in a
triangular lattice which shares its 3 (4)

2 -subcluster (ABB triangle, PQR) with
two neighboring 4-clusters, XQRP and YRPQ. The internal orientation of
the 3 (4)

2 -subcluster in PQRS is equivalent to that in XQRP, but not equiv-
alent to that in YRPQ.
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Fig. 3. Overlap of three rhombi clusters in a triangular lattice. The rhombus PQRS is a
42 -cluster which has a A-lattice-point (marked by a closed circle) at P and B-lattice-points at
Q, R, and S. Its 3(4)

2 -subcluster PQR (ABB-type triangle) is shared by neighboring rhombi
XQRP and YRPQ. The subcluster PQR has an internal orientation in XQRP, equivalent to
that in PQRS, but does not in YRPQ.

The probability uis$
jqr$ of the neighboring i-cluster having such a physi-

cally correct j (is$)
qr -subcluster with the proper internal orientation at the

proper internal position is given by

uis$
jqr$=:

k

nikmiks$
jqr$ �b

is$
j wis$

jqr$ (13)

The factor nik represents the probability of the parent i-cluster having the
kth configuration, miks$

jqr$ �b
is$
j the probability of the parent ik-cluster contain-

ing a j (is$)
qr$ -subcluster at the proper internal position of the s$ th kind, and

1�wis$
jqr$ the probability of the j (is$)

qr$ -subcluster having the proper internal
orientation of the r$ th kind. Note that the probabilities, miks$

jqr$ �b
is$
j and

1�wis$
jqr$ , are valid under the internal consistency conditions, Eqs. (11) and

(12), respectively. The summation over the configurations k of the parent
cluster gives the probability in question. We can rewrite Eq. (13) as

uis$
jqr$=M is$

jqr$ �Ni bis$
j wis$

jqr$=njq �wjq (14)
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The first equality has been derived by using Eq. (8.3), and the second
derived by using the internal consistency conditions, Eqs. (11) and (12).
Since the final expression does not depend on the internal position s$ and
the internal orientation r$, we omit the superscript s$ and subscript r$ for u
hereafter.

We assume that every couple of neighboring i-clusters overlap each
other statistically independently of any other couple. Then, the probability
of the central i-cluster sharing its j (i)

q -subcluster with c i
j&1 neighboring

i-clusters in a physically correct manner is given by u i
jq raised to the power

of c i
j&1. Further raising the power M i

jq times gives the probability of all
the M i

jq j (i)
q -subclusters being shared by c i

j i-clusters each in a physically
correct manner, but this probability counts every overlapping between two
i-clusters c i

j times. Then, the probability v i
j of all the i-clusters overlapping

each other at j (i)-subclusters in a physically correct manner is given by

v i
j= `

Cj

q=1

u i
jq

(cj
i&1) Mi

jq�cj
i

= `
Cj

q=1

(njq �w jq) (c i
j&1) Njq

=Gj ([ j])1&c i
j (15)

The first expression is derived by substituting Eq. (10) and the last one is
obtained within the Stirling approximation.

However, successive overlapping of parent clusters in the lattice
generates multiple loops of overlapping clusters to violate the assumption
of statistical independence of individual overlapping. Then, to obtain the
probability p i

j of all the i-clusters overlapping correctly at the j (i)-sub-
clusters in the lattice, we introduce a correction factor y i

j in such a manner
as

p i
j=v i

j y i
j (16)

We assume that y i
j is a minor factor which can be represented as a function

of [ j&1]. Then, the number of different i-cluster distributions which are
physically correct with respect to overlapping at j (i)-subclusters (1E j<i),
or more simply, the lattice configuration factor Z i

j ([i ]), can be expressed
as

Z i
j ([i ])=Gi ([i ])_p i

j=Gi ([i ]) Gj ([ j ])1&c i
j y i

j ([ j&1]) (17)

It is an explicit form of Z i
i&1([i ]) that we want to obtain, since Z i

i&1 is
expected to be the most precise configuration factor among Z i 's.
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2.7. Reducibility of the Configuration Factor

The lattice configuration factor must satisfy the reducibility condition:
Summing up Z i

j ([i ]) over possible distributions [i ] that are consistent
with a given distribution of smaller j-clusters, [ j ], should yield Z j

j&1([ j ]),
i.e.,

:$
(i, j)

[i ]

Z i
j ([i ])=Z j

j&1([ j ]) (18)

The constraints (i, j) on the summation consist of Eq. (2) the normaliza-
tion condition of [i ], Eq. (10) the distribution [ j ], and Eqs. (11) and (12)
the internal consistency conditions with respect to the j (i)-subcluster. We
substitute Eq. (17) into Eq. (18) and then replace the summation with the
maximum term only, where we denote [i ] as [i*]j , which are functions
of [ j ]:

:$
(i, j)

[i ]

Z i
j ([i ])=Gi ([i*]j ) Gj ([ j ])1&c i

j y i
j ([ j&1]) (19)

We can see from Eq. (17) that the leading factor in the right hand side of
Eq. (18) is Gj ([ j ]). Then we can express Gi ([i*] j ) as

Gi ([i*]j )=Gj ([ j ])c i
j f i

j ([ j&1]) (20)

where the minor factor f i
j is a function of [ j&1].

Next, we consider the reduction of Z i
j ([i ]) for a given [ j&1]. We

have

:$
(i, j&1)

[i ]

Z i
j ([i ])=Gi ([i*]j&1) Gj ([ j*]j&1)1&c i

j y i
j ([ j&1])

=Gj&1([ j&1])c i
j&1+(1&c i

j ) c j
j&1 y i

j ([ j&1])

_function of [ j&2] (21)

The last expression is obtained by applying Eq. (20) to the first two factors
in the second expression and should be identical to

Z j&1
j&2 ([ j&1])=Gj&1([ j&1]) Gj&2([ j&2])1&c j&1

j&2 y j&1
j&2 ([ j&3]) (22)

Comparing the leading factors of these two expressions, we see that
yi

j ([ j&1]) should contain a factor Gj&1([ j&1]) raised to a power

634 Asada



1&c i
j&1&(1&c i

j ) c j
j&1 . In this way, we can prove via a recursive proce-

dure that y i
j ([ j&1]) is factorized into Gk([k])'s with 1EkEj&1.

Now we consider the configuration factor Z i
i&1([i ]). According to the

above discussion, we represent its correction factor y i
i&1 as

yi
i&1([i&2])= `

i&2

k=1

Gk([k])x i
k (23)

When we define x i
i#1 and x i

i&1#1&c i
i&1 for convenience, we have from

Eqs. (17) and (23)

Z i
i&1([i ])= `

i

k=1

Gk([k])x i
k (24)

Summing up Z i
i&1 for a given j-cluster distribution [ j ], we have

:$
(i, j)

[i ]

z i
i&1([i ])= `

j

k=1

Gk([k])x i
k `

i

k= j+1

Gk([k*]j )
x i

k (25)

Applying Eq. (20), we obtain the leading factor Gj ([ j ]) raised to the
power of � i

k= j x i
kck

j . Letting this to be equal to the leading factor G j ([ j ])
in Z j

j&1([ j ]), we arrive at the goal:

:
i

k= j

x i
kck

j =1 (26)

Since Eq. (26) turns out to be to x i
i=1 when j=i and to x i

i&1=1&c i
i&1

when j=i&1, it holds for any j with 1EjEi and determines uniquely
[xi ]. When we define x i

k=0 for k>i, we have a matrix representation:

\
1

x i
k

1
. . .

0

1+\
1

ck
j

1
. . .

0

1+=\
1

1

1
. . .

0

1+ (27)

Equation (26) can alternatively be interpreted as follows: If we regard
the lattice as being covered by parent clusters of the type 1 through i and
xi

j -fold by parent j-clusters (note that x i
j may also be negative) respectively,

then Eq. (26) implies that for respective j, the aggregate of the parent
j-clusters and j-subclusters contained in larger parent clusters cover the
lattice only one fold.
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3. CONCLUDING REMARKS

In summary, the lattice configuration factor Z i
i&1([i ]) is given by

Eq. (24) with [xi ] defined by Eq. (26): The i-cluster distribution [i ] must
meet Eq. (2), the normalization condition of [i ], as well as the internal
consistency conditions Eq. (12) with respect to the (i&1)(i)-subcluster. The
distribution of smaller clusters, [ j ] with any j<i, is defined as functions
of [i ] by Eq. (10) combined with Eq. (8.1). It should be pointed out that
the cluster series in which the j-cluster is the largest overlap cluster between
nearest neighboring ( j+1)-clusters enables us to establish a consistent rela-
tion between lattice configuration factors through reducibility conditions.

Tables I and II include x's obtained for small parent clusters in a tri-
angular lattice and in a square one, respectively. They indicate that the
configuration factors Z i

i&1([i ]) for i=1, 2, and 3 correspond to the
Bragg�Williams, the quasichemical, and the Kikuchi approximation, respec-
tively.(1) These approximations require no internal consistency conditions.

It should be mentioned that Hijmans and de Boer(6) have already
derived a set of equations equivalent to Eq. (26) by the pseudo-assembly
method, although their definition of cluster series is different from ours.
Morita(10, 11) also has recently derived a formula equivalent to Eq. (26) in
an elegant mathematical manner by applying the Mo� bius inversion method
to a generalized cluster series. However, our method of deriving Eq. (26)
discloses much simpler and much clearer statistical implications of the

Fig. 4. Bethe trees with the coordination number 3: (a) Every lattice point is connected with
three other lattice points, but there exists no loop of bonds; (b) The lattice points and bonds
are replaced with parent clusters (circles) and overlap subclusters (painted parts), respectively.
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CVM than ever. The essential assumption employed in our formulation is
that individual overlapping events among parent clusters are statistically
independent of each other. This implies that we disorganize all of inter-
action loops among parent clusters to transform the lattice into a kind of
Bethe tree where the constituent entities are parent clusters instead of
lattice points: Every parent cluster is connected with nearest neighboring
parent clusters by sharing the largest subclusters, but the connection
between the parent clusters does not form any loop. Figure 4 illustrates a
Bethe tree of parent clusters. This is a new statistical aspect of the CVM,
which has been revealed by this work.
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